
Fragile X syndrome is the most common cause of inherited autism and results from loss of function of a single gene: FMR1. Most research into the pathogenesis of fragile X syndrome has focused on the role of FMRP, the protein encoded by FMR1, in neuronal health and function. However, recent work in cultured cells suggests that loss of FMR1 in astrocytes, star-shaped brain cells that help support neurons at their junctions (synapses), can contribute to the abnormal dendritic morphology and synapse development seen in fragile X. In addition, over the past decade, increasing evidence has demonstrated that glia — support cells in the brain — such as astrocytes play important roles in regulating neuronal synaptic development, plasticity and communication. These are activities that, if altered, may contribute to fragile X syndrome and autism.