It is well established that homeostatic signaling systems interface with the mechanisms of developmental and learning-related plasticity to achieve stable yet flexible neural function and animal behavior. Experimental evidence from organisms as diverse as Drosophila, mice and humans demonstrates that homeostatic signaling systems stabilize neural function through the modulation of synaptic transmission, ion channel abundance and neurotransmitter receptor trafficking. At a fundamental level, if homeostatic plasticity is compromised, the nervous system is likely to be more sensitive to perturbations. Graeme Davis and his colleagues speculate that impaired homeostatic plasticity could contribute to autism by making the developing nervous system vulnerable to perturbations of any origin, including genetic, environmental or immunological stresses.